

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espanol, favor de llamar al telefono (972) 468-4000.

PWS ID#: TX0430042

Meeting the Challenge

We are once again proud to present to you our annual water quality report. This edition covers all testing completed from January 1 through December 31, 2008. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal drinking water standards. We continually strive to adopt new and better methods for delivering the best quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the challenges of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please share with us your thoughts about the information in this report. After all, well-informed customers are our best allies.

The City of Murphy maintains a SUPERIOR water rating from Texas Commission on Environmental Quality (TCEQ).

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Conservation

You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

 Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.

- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks.
 Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank.
 Watch for a few minutes to see if the color
- shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you can save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Where Does My Water Come From?

The City of Murphy receives its water supply from the North Texas Municipal Water District, which is a treated water source. The North Texas Municipal Water District uses surface water from three sources: Lake Lavon, Lake Chapman, and Lake Texoma. The surface water supply is withdrawn from Lake Lavon via pumping stations and piped into one of the three water treatment plants located in Wylie. After being treated, water is then stored in three ground storage tanks and one elevated storage tank, which is owned and operated by the City of Murphy water utilities.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to \$1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at www.nrdc.org/water/drinking/bw/exesum.asp.

Community Participation

The Murphy City Council meetings are held at City Hall, 206 N. Murphy Rd., on the first and third Monday of each month at 6:00 p.m. For additional information regarding this report, please contact the City of Murphy Public Works at (972) 468-4000.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Murphy is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Information on the Internet

The U.S. EPA Office of Water (www.epa.gov/watrhome) and the Centers for Disease Control and Prevention (www.cdc. gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, the TCEQ has a Web site (www.tceq.com) that provides complete and current information on water issues in Texas, including valuable information about our watershed.

What's Your Water Footprint?

You may have some understanding about your carbon footprint, but how much do you know about your water footprint? The water footprint of an individual, community, or business is defined as the total volume of freshwater that is used to produce the goods and services that are consumed by the individual or community or produced by the business. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred and sixty-four gallons of water are required to produce one quart of milk, and 4,200 gallons of water are required to produce two pounds of beef.

According to the U.S. EPA, the average American uses about 100 gallons of water daily. In fact, in the developed world, one flush of a toilet uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per capita water footprint is about 8,000 cubic feet; twice the global per capita average. With water use increasing six-fold in the past century, our demands for freshwater are rapidly outstripping what the planet can replenish.

To check out your own water footprint, go to www.h2oconserve.org, or visit www.waterfootprint.org to see how the water footprints of other nations compare.

Questions?

For more information about this report, or for any questions relating to your drinking water, please call the Public Works Department at (972) 468-4000 or by email at publicworks@murphytx.org.

How Long Can I Store Drinking Water?

The disinfectant in drinking water will eventually dissipate even in a closed container. If that container housed bacteria prior to filling up with the tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

Should I Put a Brick in My Toilet Tank to Save Water?

Toilet flushing uses a lot of water: about 40 percent of a household's total water usage. Putting something in the toilet tank that takes up space, like a toilet dam or a water filled jug, is a good idea. But putting a brick in the tank is not a good idea; bricks tend to crumble and might damage your toilet.

Is It Safe to Drink Water from a Garden Hose?

Substances used in vinyl garden hoses to keep them flexible can get into the water as it passes through the hose. These chemicals are not good for you nor are they good for your pets. Allow the water to run for a short time in order to flush the hose before drinking or filling your pets' drinking containers. There are hoses made with "food-grade" plastic that will not contaminate the water. Check your local hardware store for this type of hose.

Naturally Occurring Bacteria

The simple fact is, bacteria and other microorganisms I inhabit our world. They can be found all around us: in our food; on our skin; in our bodies; and, in the air, soil, and water. Some are harmful to us and some are not. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern because it indicates that the water may be contaminated with other organisms that can cause disease. Throughout the year, we tested many water samples for coliform bacteria. In that time, none of the samples came back positive for the bacteria. Federal regulations now require that public water that tests positive for coliform bacteria must be further analyzed for fecal coliform bacteria. Fecal coliform are present only in human and animal waste. Because these bacteria can cause illness, it is unacceptable for fecal coliform to be present in water at any concentration. Our tests indicate no fecal coliform is present in our water.

Fixtures with Green Stains

A green or blue-green stain on kitchen or bathroom fixtures is caused by tiny amounts of copper that dissolve in your home's copper plumbing system when the water sits unused overnight. Copper staining may be the result of a leaky faucet or a faulty toilet flush valve, so be sure your plumbing is in good working order.

Copper stains may also be caused by overly hot tap water. Generally speaking, you should maintain your water temperature at a maximum of 120 degrees Fahrenheit. You should consult the owner's manual for your heater or check with your plumber to determine your current heat setting. Lowering your water temperature will reduce the staining problem and save you money on your energy bill.

Also keep in mind that a tap that is used often throughout the day usually will not produce copper stains, so if you flush the tap for a minute or so before using the water for cooking or drinking, copper levels will be reduced.

What's a Cross-connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand) causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continually jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed all industrial, commercial, and institutional facilities in the service area to make sure that all potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test each backflow preventer to make sure that it is providing maximum protection.

For more information, review the Cross-Connection Control Manual from the U.S. EPA's Web site at www.epa.gov/safewater/crossconnection.html. You can also call the Safe Drinking Water Hotline at (800) 426-4791.

Sampling Results

During the past year we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. Although all of the substances listed here are under the Maximum Contaminant Level (MCL), we feel it is important that you know exactly what was detected and how much of the substance was present in the water.

REGULATED SUBSTANCES								
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Atrazine (ppb)	2008	3	3	0.12	0.10-0.12	No	Runoff from herbicide used on row crops	
Barium (ppm)	2008	2	2	0.04	0.04-0.04	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	
Chlorine Dioxide (ppb)	2008	800	800	0.04	ND-0.56	No	Water additive used to control microbes	
Chlorite (ppm)	2008	1	0.8	0.49	0.01-0.65	No	By-product of drinking water disinfection	
Fluoride (ppm)	2008	4	4	0.47	0.45-0.47	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	
Nitrate (ppm)	2008	10	10	0.45	0.42-0.45	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Total Organic Carbon (ppm)	2008	ТТ	NA	3.29	2.58–3.29	No	Naturally present in the environment	

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2008	1.3	1.3	0.438	0	No	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2008	15	0	1.9	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED AND OTHER SUBSTANCES ¹								
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE				
Sodium (ppm)	2008	40.40	35.2–40.4	Naturally occurring				
Sulfate (ppm)	2008	80.40	62.4–80.4	Runoff/leaching from natural deposits; Industrial wastes				
TTHMs [Total Trihalomethanes]–IDSE Results ² (ppb)	2008	28.3	27.5–28.3	By-product of drinking water chlorination				

¹Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the U.S. EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level):

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (**Not detected**): Indicates that the substance was not found by laboratory analysis.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.

²We are required by the U.S. EPA to conduct an evaluation of our distribution system. This is known as an Initial Distribution System Evaluation (IDSE) and is intended to identify locations in our distribution system that have elevated disinfection by-product concentrations. Disinfection by-products (e.g., HAAs and TTHMs) result from continuous disinfection of drinking water and form when disinfectants combine with organic matter that naturally occurs in the source water.